Math 102

Krishanu Sankar

October 4, 2018

Announcements

- Thanksgiving on Monday October 8
- We will have class Tuesday October 9
- No pre-lecture WW
- Midterm signups - see email from Elyse Yeager

Goals Today

- Conceptual questions about $f(x), f^{\prime}(x), f^{\prime \prime}(x)$
- More graph sketching - rational functions

Reminder: Terminology

- $f^{\prime}(x)$ measures the slope of a function. When $f^{\prime}(x)=0$, it is called a critical point.

Reminder: Terminology

- $f^{\prime}(x)$ measures the slope of a function. When $f^{\prime}(x)=0$, it is called a critical point.
- $f^{\prime \prime}(x)$ measures the concavity of a function.
$f^{\prime \prime}(x)>0 \Longrightarrow$ concave up
'like a cup'
$f^{\prime \prime}(x)<0 \Longrightarrow$ concave down
'like a frown'

Fill the table!

(I) Negative when $x<0$, negative when $x>0$
(II) Negative when $x<0$, positive when $x>0$

(a)

(c)
(III) Positive when $x<0$, negative when $x>0$
(IV) Positive when $x<0$, positive when $x>0$

(d)
(I) Negative when $x<0, \quad$ (III) Positive when $x<0$, negative when $x>0$ (d) (II) Negative when $x<0$, positive when $x>0$ (a)

(c)
negative when $x>0$ (b) (IV) Positive when $x<0$, positive when $x>0$ (c)

(d)
$f^{\prime \prime}(x)$ is...
(I) Negative for all x
(II) Negative when $x<0$, positive when $x>0$

(a)

(c)
(III) Positive when $x<0$, negative when $x>0$
(IV) Positive for all x

(b)

(d)
$f^{\prime \prime}(x)$ is...
(I) Negative for all x (b)
(II) Negative when $x<0$, positive when $x>0$ (c)
(III) Positive when $x<0$, negative when $x>0$ (d) (IV) Positive for all x (a)

(b)

(d)

Classifying Critical Points

How do we determine if a critical point of $f(x)$ is a local minimum, a local maximum, or neither? There are two ways:

- We can look at $f^{\prime}(x)$, the slope.
- If $f^{\prime}(x)$ changes from positive to negative, it's a local maximum.
- If $f^{\prime}(x)$ changes from negative to positive, it's a local minimum.
- Otherwise, it is neither.
- We can test $f^{\prime \prime}(x)$, the concavity at the critical point.
- If $f^{\prime \prime}(x)>0$, it's a local minimum.
- If $f^{\prime \prime}(x)<0$, it's a local maximum.
- If $f^{\prime \prime}(x)=0$, it's more complicated...

Graph Sketching

Question: For the function

$$
f(x)=\frac{1}{4} x^{4}-2 x^{3}+\frac{9}{2} x^{2}+1
$$

- Find all critical points.
- Which are local maxima? Local minima? Neither?

Graph Sketching

Question: For the function

$$
f(x)=\frac{1}{4} x^{4}-2 x^{3}+\frac{9}{2} x^{2}+1
$$

- Find all critical points.
- Which are local maxima? Local minima?

Neither?
Use this information to sketch the function. Then label any inflection points.

Graph Sketching

$$
f(x)=\frac{x^{2}}{x+1}
$$

Graph Sketching

$f(x)=\frac{x^{2}}{x+1}$

- Vertical asymptote at $x=-1$, zero at $x=0$. Goes to $\pm \infty$ as $x \rightarrow \pm \infty$.

Graph Sketching

$f(x)=\frac{x^{2}}{x+1}$

- Vertical asymptote at $x=-1$, zero at $x=0$. Goes to $\pm \infty$ as $x \rightarrow \pm \infty$.
- $f^{\prime}(x)=\frac{x^{2}+2 x}{(x+1)^{2}}$. Critical points at $x=0,-2$.

Graph Sketching

$f(x)=\frac{x^{2}}{x+1}$

- Vertical asymptote at $x=-1$, zero at $x=0$. Goes to $\pm \infty$ as $x \rightarrow \pm \infty$.
- $f^{\prime}(x)=\frac{x^{2}+2 x}{(x+1)^{2}}$. Critical points at $x=0,-2$.
- By testing a point in each region, $f^{\prime}(x)$ is positive for $x>0$, negative for $-1<x<0$ or $-2<x<-1$, and positive for $x<-2$.

Graph Sketching

$$
f(x)=\frac{x^{2}}{x+1}
$$

- Vertical asymptote at $x=-1$, zero at $x=0$. Goes to $\pm \infty$ as $x \rightarrow \pm \infty$.
- $f^{\prime}(x)=\frac{x^{2}+2 x}{(x+1)^{2}}$. Critical points at $x=0,-2$.
- By testing a point in each region, $f^{\prime}(x)$ is positive for $x>0$, negative for $-1<x<0$ or $-2<x<-1$, and positive for $x<-2$.
- $f^{\prime \prime}(x)=\frac{2}{(x+1)^{3}}$. This is positive for $x>-1$ and negative for $x<-1$.

Sketching Game

1. $f(x)=\frac{1}{4} x^{4}-\frac{2}{3} x^{3}+1$
2. $f(x)=\frac{1}{4} x^{4}-\frac{4}{3} x^{3}+2 x^{2}+1$
3. $f(x)=\frac{x^{2}}{4}-\frac{2}{x}$
4. $f(x)=\frac{5(x-1)^{2}}{x^{3}}$

Recap

Conceptual questions about $f(x), f^{\prime}(x), f^{\prime \prime}(x)$

- More graph sketching - rational functions

Extra Practice

Consider the Hill function we discussed last class

$$
P(x)=\frac{30 x^{3}}{20^{3}+x^{3}}
$$

We found that the graph of $G(x)=0.5 x$ intersects $P(x)$ at two distinct positive values of x. On the other hand, when a is very large, $f(x)=a x$ does not intersect the graph of $P(x)$ at all! We claim that $f(x)=\frac{x}{\sqrt[3]{2}}$ is tangent to the graph of $P(x)$.
Show that this is true.

